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The effect of flow oscillation on the stability of plane channel flow is studied via 
numerical simulation. For weak oscillation, the ratio of the Stokes layer thickness to  
the distance from the wall to  the critical layer in steady flow provides the best 
normalization for the mean-flow frequency. Maximum growth rates occur when the 
instantaneous velocity profile has large regions of positive curvature. The effect of 
oscillation is generally stabilizing. However, a t  low frequencies, TS wave energies 
may vary by lo6 in a cycle and irreversible secondary instability may be produced 
a t  the peak. 

1. Introduction 
Laminar-turbulent transition in the presence of an unsteady mean flow is a 

fundamental problem in fluid mechanics. While many types of mean unsteadiness are 
possible, in this paper we study the idealized problem of oscillatory flow in a plane 
channel in order to obtain insight as to how flow periodicity influences the transition 
process. Very little previous work has been done on this problem. 

Grosch & Salwen (1968) integrated the linearized equations through one period of 
oscillation. The maximum growth rate was determined by solving the resultant 
eigenvalue problem. For small mean velocity perturbations the modulated flow was 
more stable than the steady flow. Larger fluctuations produced an abnormally strong 
instability. The validity of this result has been questioned by other researchers. 

Herbert (1972) performed an energy analysis for small modulation amplitudes. He 
examined the energy transfer process in the thin shear layer a t  the wall and found 
that mean flow frequencies greater than the frequency of a disturbance wave make 
the flow more stable. He emphasized the importance of the interaction of the 
unsteady portion of the mean flow with the disturbance. 

Hall (1975) studied the stability characteristics of oscillatory plane Poiseuille flow 
for high frequency modulations. He matched expansions for the very thin Stokes 
layer with those of the outer flow and concluded that high-frequency oscillations 
have a slightly destabilizing effect. 

Von Kerczek (1982) performed a perturbation analysis of the linear equations 
about the critical Reynolds number. He found that modulation frequencies near that 
of the most unstable Tollmien-Schlichting (T-S) wave of the steady case stabilized 
the flow. At the critical Reynolds number of 5772.22 both very low and very high 
frequencies tend to  make the flow mildly unstable. He did not find any strongly 
unstable modes, in conflict with the results of Grosch & Salwen (1968). 
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In this work, the problem is approached via direct numerical simulations of the full 
Navier-Stokes equations as well as two-dimensional linear simulations. We start by 
describing the time-dependent mean flow, paying special attention to factors that 
may be important during transition. We continue with a discussion of linear 
development. Finally, we connect these results with fully three-dimensional, 
nonlinear simulation results. 

2. The mean flow 
The flow considered is that between two parallel plates of infinite extent in the 

streamwise and spanwise directions. The streamwise direction is denoted by x or xl, 
the direction normal to the walls by y or x2, and the spanwise direction by z or x3. 
All quantities are non-dimensionalized using the channel half-width, h, the centreline 
velocity of the steady laminar flow, U,, and the density, p .  The Reynolds number is 
Re = U, h/u where v is the kinematic viscosity. The domain extends from - 1 to 1 in 
the normal direction with 0 on the centreline. The flow is driven by an unsteady 
pressure gradient, 

- dP = - ~ ( l + N c o s ( l S ) ) ,  
dx Re 

where the relative amplitude of the pressure oscillation is N ,  the frequency of 
oscillation is Q*, the Strouhal number is S = Q*h/U,, and time is non-dimen- 
sionalized by h/U,. The mean flow is given by 

U(y) = 1 - y2 + A  sin (t8) 

(2.3) 
a ( y )  = cos [(ReS/2)iy) cosh [(ReS/2); y], 

b(y) = sin [(Re8/2)fy]sinh[(ReS/2)iy], 

and A = 2N/SRe is the maximum fractional change in the mean flow velocity. The 
velocity consists of three parts. The first is the parabolic profile, 1 - y2, representing 
the time-mean or steady laminar flow. The second term, A sin ( tS) ,  represents the 
displacement of the bulk flow velocity with no change in shape; it is the effect the 
pressure oscillation would produce in the absence of walls. The remaining terms are 
needed to satisfy the no-slip boundary condition ; they represent Stokes layers near 
the walls which become thinner as the Strouhal and/or Reynolds number increases. 
The presence of the Stokes layers is the most important effect of the unsteadiness. 
The non-dimensional thickness of the Stokes layer is 6 = [2/Re S)]:. In  the parameter 
range studied here, 0.01 < S < 0.2. 

Figure l ( a 4 )  shows the mean velocity profiles a t  four different phases for 
Re = 5000, S = 0.1052, and A = 0.10. For this flow, 6 = 0.06. Of particular 
importance are inflection points in the profile. Figure 1 (a) shows the velocity profile 
at t = 14.93, just before inflection points develop at each wall. At 29.87 (figure l b )  
there are inflection points a t  y = f0.92. The inflection points slowly migrate toward 
the channel centre. When they reach y = k0.85, new inflection points develop a t  
each wall and all four inflection points move toward the channel centre. The profile 
a t  t = 44.81 (figure l c )  contains two inflection points near each wall; the extent of the 
region of positive curvature is Ay x 0.15 and is approximately the largest extent of 
positive curvature. As time progresses, the inflection points nearer the channel centre 

where 
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FIGURE 1 (u, b ) .  For caption see next page. 
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FIGURE 1 .  Mean flow near upper wall (channel upper half in insert) at various times and 
Re = 5000, S = 0.1051667, A = 0.10. (a)  t = 14.93, ( b )  29.87, (c) 44.81, (d )  59.74. 
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change their direction of motion and move towards the wall. The profile at t = 59.74 
contains inflection points a t  y = f0.89 and y = f0.80. These two inflection points 
continue to approach each other and finally coalesce and disappear a t  t = 64.9. 

3. Linear theory 
3.1. Analysis 

The available results of linear stability theory for oscillating plane Poiseuille flow are 
in serious disagreement. Grosch & Salwen (1968) found highly unstable modes for 
large-amplitude pressure gradient modulation while von Kerczek (1982) indicated 
that such modes do not exist. To obtain reliable results against which full simulation 
results can be checked, we recomputed the linear behaviour. This will also help clear 
up the discrepancy. 

To determine the most unstable modes for flow in a plane channel subject to a 
sinusoidally varying pressure gradient, we employ a linear theory similar to that of 
Grosch &, Salwen (1968). This involves integrating the linearized Navier-Stokes 
equations for a full period of the oscillation. The pressure and stream function are 
assumed to have the form 

I 2 
Re 

p ( z ,  y, t )  = --z(1 +Nsin (tS)) +#(y, t )  exp (ik,z), 

$(., y, t )  = 9 ( y ,  t )  exp (ik, z). J 
Substituting these into the Navier-Stokes equations, linearizing and eliminating the 
pressure we find an equation for $: 

where a prime indicates differentiation with respect to y.  The no-slip and 
impermeability boundary conditions become 

# = $ ‘ = O  at y = + l .  (3.3) 

To solve this equation, we expand 9 in a generalized Fourier series 

where each expansion function satisfies the boundary conditions. The work of Moser, 
Moin & Leonard (1983) suggests a convenient choice : 

[9,(Y) = (1 -Y2)“P,(Y), (3.5) 

where Pn(y) is the Legendre polynomial of order n. Legendre polynomials provide 
good resolution near the wall (Gottlieb & Orszag 1981) where the effects of the 
pressure modulation are most important. Multiplying (3.2) by $m and integrating 
across the channel gives 

(3.6) 
dg A - = Bg + Cg. 
dt 

The vector g is composed of the unknown coefficients gn(t). The matrices A and B are 
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time-independent banded symmetric matrices. Integration by parts allows us to 
write their elements as 

A m ,  n = -J:, (hi d m  $n + 9~ $i)dy (3.7) 

and 

The integrals in (3.7) and (3.8) can be evaluated using the orthogonality properties 
of Legendre polynomials. The matrix C contains the convective terms and must be 
recomputed at  each time step using the unsteady mean velocity profile U. Its  
elements are 

1 

c m ,  n = ik, I-, [(urn+ k z )  9, $f i  + '$L 4; + u 9 m  #;I dy. (3.9) 

Lobatto quadrature (similar to  Gauss quadrature but with the coordinates of the 
endpoints fixed, see Abramowitz & Stegun 1972) is used to  compute the right-hand 
side of (3.9). If N grid points (including f 1) are used, the y-location of the ith grid 
point is the (i-1)th zero of PNPl, Lobatto quadrature exactly integrates any 
polynomial of degree less than or equal to 2N-3, hence the integrand in (3.9) must 
satisfy this constraint. The values of the velocity U are required at the N collocation 
points ; this is equivalent to replacing U by an (N-  1)-order polynomial through the 
points. To obtain an exact result, the maximum order, N ,  of the polynomial in the 
expansion functions, 4, must satisfy 2M+N-3 < 2N-3 orM < I$. This relation is 
similar to the 

Since we are interested in the most unstable mode (the one with maximum growth 
or minimum decay), we consider a generalization of (3.6), 

rule used to avoid aliasing errors. 

dG 
dt 

A- = B G  + CG, (3.10) 

where G is a matrix of solution vectors. By initializing G to the identity matrix we 
ensure capture of the complete set of solutions. As this is a Floquet problem, we 
expect the solution to  have the form 

G(t) = P(t)exp ( tQ) ,  (3.11) 

where Q is a constant matrix and P is a periodic matrix ; the period, 7 ,  is imposed by 
the pressure and is the same as that of C, the matrix containing the convective terms. 
We follow the procedure of Grosch & Salwen (1968) to  determine the stability 
characteristics. Since 

G(0) = f 

= P(0) exp (OQ) (3.12) 

we have P(0) = I. 

At the end of a period, G(7) = P(7) exp (7Q) 

= P(0) exp (7Q) 

= exp (70). 

If the eigenvalues of G(7) are A,, the associated growth rates are 

a, = In (h j ) /7 .  

(3.13) 

(3.14) 
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s A von Kerczek Linear Full 

W I P 2  0.20 +5.0 x 10-3 +5.6 x 10-3 +4.8 x 10-3 
w1/7 0.20 - 8 . 0 ~  10-3 -7 .7  x 10-3 -8.2 x 10-3 
w1/3 0.05 -2.2 x 10-3 -2.2 x 10-3 -2.2 x 10-3 

0 1  0.10 - 1 . 0 ~ 1 0 - 3  -1 .0~10-3  -1 .1~10-3  
W1 0.25 -5.5 x 10-3 -5.3 x 10-3 -5.3 x 10-3 
2% 0.20 -4.1 x 10-4 -5.7 x 10-4 -5.7 x 10-4 
4% 0.20 -5.1 x 10-5 -4.3 x 10-6 -5.2 x 10-5 
16w, 0.20 +4.6 x 10-9 +4.6 x 10-5 -3.9 x 10-6 

w1/3 0.20 -2.6 x -2.7 x lo-* -2.7 x lo-* 

TABLE 1. Comparison of growth rates: Re = 5772.22, k, = 1.0206, w1 = 0.2694 

A positive real part of uj indicates growth, a negative value indicates decay. 
Experience with the steady Om-Sommerfeld equation suggests that  the least-stable 
mode has a real part small relative to its imaginary part. To avoid polluting the small 
growth rate, we use a time-advance scheme which is reversible; integration of (3.10) 
is performed with the Crank-Nicolson method. 

To compare our results with those of von Kerczek, we tested the code at  
Re = 5772.22 and non-dimensional two-dimensional wavenumber k, = 1.0206. For 
this case, the Tollmien-Schlichting (TS) wave with non-dimensional frequency 
w1 = 0.2694 is neutrally stable for steady flow and the critical layers are 0.14h from 
the walls. The growth rates calculated by von Kerczek, our linear code, and our full 
numerical simulation are given in Table 1. Von Kerczek’s results for S < w1 were 
estimated from his figure 1 ; growth rates for S 2 w1 were calculated from his table 
3. Von Kerczek estimates his results to be accurate to at least one significant digit. 
In our linear code 50 polynomials were used for o < 20, which guarantees a 
minimum of seven grid points in each Stokes layer. Using 75 polynomials changed 
the growth rates by less than 0.1 Yo. At higher frequencies, the Stokes layer was not 
well resolved. However, a t  high frequencies the effects of the oscillation are small and 
our approach is not well suited to accurate calculation of the minute growth rates. 
Considering these difficulties, the results of our linear code are in good agreement 
with those obtained by von Kerczek. Since the method used in our work is essentially 
that of Grosch & Salwen (1968), we suspect that  their erroneous results were due to 
lack of resolution of the Stokes layers. 

3.2. Results 

Including the unsteady mean flow in the full simulation code described in Singer, 
Ferziger & Reed (1987 a )  provides the results given in the last column of Table 1. Up 
to Strouhal number S = 2 0 ,  the growth rates calculated from the full simulation 
agree well with those of our linear code and von Kerczek. At higher Strouhal 
numbers, the Stokes layer in our work is not sufficiently resolved. 

To compare with our earlier computations (Singer, Reed & Ferziger 1986, 1987b), 
we used a Reynolds number of 5000. For steady mean flow, this Reynolds number 
is in the linearly stable regime. Fifty polynomials were used. The thickness of the 
Stokes layer a t  the highest frequency, S = 3.155 was 6 = 0.0112 and contained five 
grid points. Calculations with 75 polynomials gave results that  differed by less than 
1.5% at all Strouhal numbers. 

Figure 2(a)  gives the growth rates as a function of oscillation amplitude and 
frequency at Re = 5000; they are similar to von Kerczek’s results a t  Re = 5772.22. 
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FIGURE 2. Oscillating mean flow linear growth rates (v) versus maximum fractional change in 
velocity (A) .  (a)  Re = 5000, k, = 1.12, w1 = 0.3155. ( b )  Re = 10000, k, = 1.0, w2 = 0.2375. (c) Re = 
25000, k, = 0.84, w1 = 0.1561. ( d )  Re = 47000, k, = 0.78, w1 = 0.1247. 0, 7 = 1.31; 0, 7 = 0.74; 

7 = 0.074. 
A , 7 = 0 . 6 2 ;  + , y = O . 5 2 ;  X,g=O.40;  0 , ? , 1 = 0 . 3 3 ; V , 7 = 0 . 2 3 ;  m , 7 = 0 . 1 7 :  * , 7 = 0 . 1 0 ; @ ,  

Figure 2(b )  showed the results a t  Re = 10000. In these figures, the frequency 
parameter is the ratio of the Stokes layer thickness to the critical layer height of the 
steady-flow TS wave. The non-dimensional distance from the wall to the critical 
layer is 

d, = 1 - I Y C L  (3.15) 

where yc  is the height a t  which the phase speed of the TS wave is equal to the speed 
of the mean flow in the steady case. Thus the frequency parameter is 

7 = 6 / d c .  (3.16) 

Increasing the frequency decreases 7. For the same value of 7, the curves have 
approximately the same shapes. The behaviour with increased oscillation strength is 
not monotonic at the most stabilizing frequencies. Except at the lowest frequency 
(7 = 1.31), the oscillations stabilize the flow. Provided that the streamwise 
wavenumber is approximately that of the least stable wave, the most stabilizing 
frequency for Reynolds numbers up to 47000 corresponds to 71 x 0.40; 7 increases 
slightly with increasing Reynolds number. At higher Reynolds numbers, Squire’s 
theorem shows that certain three-dimensional waves grow with the maximum 
amplification rate realized by a two-dimensional wave at the lower Reynolds number 
(Magen & Patera 1986). 

Our results a t  Re = 25000 and Re = 47000 (figures 2c and d )  indicate that the 
linear growth rate curves depend only weakly on the Reynolds number. Increasing 
the Reynolds number decreases the effects of oscillation. 

Another normalization of the frequency can be obtained with the ratio of a 
lengthscale based on (v /w:) i  (where an asterisk indicates a dimensional quantity) and 
the Stokes layer thickness. This is proportional to (G?*/w:)i, and was used by Grosch 
& Salwen (1968), while the square of this quantity was used by von Kerczek (1982) 
and Singer et al. 1 9 8 7 ~ ) .  Our data indicate that both normalizations work well. 

The nonlinear behaviour of this flow is closely connected with its linear behaviour. 
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FIGURE 3. Computed r.m.s. streamwise velocity of a two-dimensional wave based on the linearized 
equation with k, = 1.12, Re = 5000, S = 0.105 1667 (7 = 0.40), and d = 0.10 at (a) t = 14.93, 
( b )  29.87. (c) 44.81 and ( d )  59.74. 

Y Y 

The average growth or decay of a wave over a cycle was given above. It is 
also important to consider the detailed behaviour. As a typical case, consider 
S = 0.1051667 (7 = 0.40), A = 0.10; the mean flow was described above. Since the 
mean flow is symmetric about the centreline, references to mean flow features will 
be restricted to one side of the channel. 

To study the linear evolution of a two-dimensional wave, we solve (3.6) with an 
initial condition vector whose elements are all unity. After just one cycle, the profile 
becomes periodic and therefore independent of the initial conditions. Results are 
given for the second period but, for comparison with our previous results, we report 
the times as if it were the first cycle. Instantaneous growth rates are computed from 

(3.17) 

where Ig(t)l is the L,-norm of g(t). 300 time steps per cycle were used; using 200 time 
steps per period gave results that  were indistinguishable from these. First-order 
backward differences are used to calculate time derivatives ; this is sufficiently 
accurate. As a test, we ran a case with A = 0; the instantaneous growth rate was 
within 0.2 ?A of the growth rate of the least stable steady-flow eigenmode. The dotted 
line in figure 6 ( b )  shows the instantaneous linear growth rate versus time. The 
maximum positive growth rate occurs when the extent of positive curvature near 
each wall is large. Figure 3(a )  gives the r.m.s. streamwise perturbation velocity 
distribution at t = 14.93. There are no inflection points in the flow at this time; the 
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instantaneous growth rate (cf. figure 6 b )  is negative and the profile resembles a TS 
wave. At t = 29.87, the r.m.8. streamwise velocity distribution is shown in figure 3(b) 
and as figure 6(b) indicates, the decay is very strong. Next comes the most unusual 
phase of the cycle; at t = 44.81, the streamwise velocity distribution has a double 
peak structure (cf. figure 3c). A second inflection point has just appeared in the flow, 
there is a large region of positive curvature, and the disturbance has a large positive 
growth rate. The double peak structure is associated with the fact that the mean flow 
is drawing energy from the two-dimensional wave in the region between the peaks. 
This will be discussed in a later section. At the end of the period, t = 59.74, there is 
still positive Gowth and figure 3 ( d )  shows that the structure is again similar to a TS 
wave. 

As the frequency of oscillation goes to zero, (2.2) and (2.3) indicate that the mean 
flow can be approximated by a parabolic profile with a slowly varying amplitude if 
the quantity +(NReS)  < 1. This condition is never satisfied by our base flows, hence 
i t  is not surprising that computations show that a quasi-steady stability analysis 
poorly predicts the instantaneous growth rates for our cases. Von Kerczek (1982) 
came to a similar conclusion. 

4. Nonlinear simulations 
4.1. Parameter description 

Since the flow seems to be relatively insensitive to the Reynolds number, all direct 
simulations were performed a t  Re = 5000. The code described by Singer et al. (1987 a )  
was used. (The original version was written by Moser using the method of Moser 
et al. 1983.) This allowed comparison with steady mean flow results a t  the same 
Reynolds number (Singer et al. (1986, 1987b). The spatial resolution was 16, 32 and 
64 modes in the streamwise, spanwise and normal directions respectively. This 
provides approximately the same resolution in the normal direction as in the linear 
two-dimensional simulations. The time step was chosen to allow a t  least 100 time 
steps per period of mean flow oscillation. For cases in which two-dimensional 
simulations indicated that the flow would change rapidly, smaller time steps were 
used. The maximum CFL number never exceeded one half of the limiting value 
allowed by the numerical method. 

Only two initial phases of the mean flow oscillation were used ; the initial pressure 
gradient was either maximum or minimum. In the following, a positive value of 
A indicates a favourable initial pressure gradient (dpldx < 0) ; a negative value of A 
indicates an adverse initial pressure gradient (dpldx > 0). Starting the computation 
with an adverse pressure gradient produces nonlinear effects that are not observed 
if the initial noise is first ‘cleaned up’ with a favourable pressure gradient. 

Simulations were performed with four magnitudes of the maximum fractional 
velocity change; = 0.10, 0.12, 0.15 and 0.20. The linear growth rates indicated 
that the effects of the oscillations are strongest for Id1 > 0.10. Stronger mean flow 
oscillations probably cannot be obtained in even carefully controlled wind tunnels 
without the addition of higher harmonics; therefore A was limited to 0.020. 

At least one simulation was performed at each of the following Strouhal numbers : 
S = 0.01, 0.031 55, 0.105 17, and 1.262. If the frequencies are expressed in terms of 
the ratio of the Stokes layer thickness to the steady-flow critical layer height, these 
correspond to: 17 = 1.31, 0.74, 0.4, 0.12 and include (1)  a very low, linearly 
destabilizing frequency, (2) a low, slightly stabilizing frequency, (3) a moderate, 
strongly stabilizing frequency, and (4) a high frequency. 
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Initial TS waves with a variety of initial amplitudes were used in our runs. Many 
of the cases were performed without a TS wave; in these cases, the structures grow 
out of the initially random background noise. 

In unsteady simulations, the initial amplitude of the random noise, -e, may be 
important. At the start of a simulation, random numbers between - -e and E are 
added to each Fourier component of the velocity a t  each y. We performed 
simulations with E = and lop4. Increasing E is always destabilizing. 

4.2. Results 
We expect the nonlinear behaviour to be correlated with the linear behaviour. At 
Re = 5000, the latter is principally determined by the frequency parameter 7. From 
figure 2 (a) ,  we can discriminate four frequency ranges. At high frequency, differences 
from the steady case are minor. At intermediate frequencies there is strong 
stabilization. At lower intermediate frequencies there is little effect on the linear 
growth rates but nonlinear effects are important. Finally, low-frequency oscillations 
are linearly destabilizing. We conjecture, on the basis of figure 2(a-d) that these 
results hold at other Reynolds numbers, at least with A < 0.15. While both high- 
frequency and moderate-to-low-frequency oscillations have little effect on the linear 
stability of the flow, we show below that the nonlinear behaviour may be quite 
different. 

4.2.1. High frequency (0.2 > 7) 
The least interesting case is one in which the forcing frequency is more than twice 

the TS frequency. In  this case, the perturbations act as if there were no oscillation, 
even with mean-flow velocity variations of 20% of the steady-flow centreline 
velocity, U,,. At this Strouhal number, the Stokes layers near the walls are very thin 
and do not interact with the TS waves. Most of the flow maintains the parabolic 
profile, the instantaneous Reynolds number simply oscillates. The oscillation is rapid 
and the disturbances behave much as they would at the average Reynolds number. 
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FIQURE 6. Instantaneous growth rates with k, = 1.12, Re = 5000, S = 0.105 1667 (7 = 0.30), and 
A = 0.10. (a )  Full simulation, ( b )  ....... two-dimensional, linear simulation ; ---, three-dimensional 
nonlinear simulation with region 75 < t < 135 enlarged and rescaled. 

4.2.2. Moderate frequency (0.6 > q > 0.2) 
In this range the TS wave is strongly damped in the presence of mean-flow 

oscillation. Consider a case with q = 0.40, A = 0.10, and an initial TS wave with 
r.m.s. streamwise velocity of 2% of U,. Without oscillation, this flow would be 
unstable; with oscillation it is stable. At this (and greater) frequencies, the two- 
dimensional wave reaches its asymptotic state during the initial period. Velocity 
fields were examined at each phase for which mean-flow and linear results were 
presented. For reference, figure 4 provides the pressure gradient as a function of time. 
Symbols correspond to the velocity field considered. 

Figure 5(a)  shows the time evolution of the energy in the two-dimensional TS 
wave. The variation is damped-periodic but the decreases in energy are steeper and 
more severe than the rises. Figure 6 ( a )  shows the instantaneous growth rate of this 
wave ; i t  was computed a t  the times indicated by the circles using a time step of 1/400 
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of the oscillation period. Local energy maxima occur when the growth rate becomes 
negative ; local minima appear a t  phases a t  which the growth rate becomes positive. 
To compare the growth rates with those obtained from linear theory, we enlarge the 
region from t = 75 to t = 135 and subtract the equivalent of one period from the 
abscissa. Both linear and nonlinear simulation instantaneous growth rates are shown 
in figure 6 (b) .  The agreement away from the region of strong gradients in the growth 
rates is satisfactory ; the differences are probably due to  the mean-flow distortion in 
the direct numerical simulation. 

The energy histories of three-dimensional waves, illustrated in figures 5 (b-e), 
indicate that qualitative application of Herbert’s (1983) secondary instability theory 
to  the unsteady flow is useful. The two three-dimensional subharmonics shown in 
figures 5 ( b )  and 5 (d )  experience very little net decay during the first two cycles of the 
mean flow. After the third peak in the primary two-dimensional wave a t  t = 131, the 
r.m.s. amplitude of the streamwise component of the two-dimensional wave has been 
reduced to 0.44% of U,, and the three-dimensional waves experience much more 
rapid decay. This amplitude of the two-dimensional wave is near the critical level 
required to support the subharmonic secondary instability in steady flow. The 
critical amplitude needed to support fundamental (K-type) modes in steady flow is 
greater than that required to support the H-type modes. In  consequence, the two 
three-dimensional fundamental modes shown in figures 5 (c)  and 5 ( e )  decay after the 
first period. This leads us to believe that the mechanisms in oscillating flow are 
similar to  those in steady flow. However, quantitative extension of Herbert’s theory 
to unsteady mean flows would be very difficult. Structural varations of the two- 
dimensional wave are major difficulties. Also, the growth/decay of the primary two- 
dimensional wave increases the importance of the strength of the background noise 
in determining not only when, but whether, transition will occur. Similarly, the 
initial phase of the flow can be important; an initially decaying two-dimensional 
wave requires a larger initial amplitude or a higher level of random noise to induce 
transition than an initially growing wave. Finally, the instantaneous growth rates of 
the two-dimensional wave are comparable with those of the three-dimensional 
secondary waves, invalidating the quasi-steady assumption in Herbert’s theory. 
It is unlikely that a quasi-steady secondary instability analysis would give results in 
accord with direct numerical computations. 

We now look at the r.m.9. streamwise velocity distributions of three selected 
waves. In  particular, we compare the evolution of the two-dimensional wave with the 
prediction of linear theory, and the evolution of the dominant three-dimensional 
waves with those in previous simulations. 

Figure 7 (a-d) shows profiles of the two-dimensional wave through one cycle. The 
sequence of figures starts a t  t = 134, slightly after a peak in the energy. The two- 
dimensional profiles are almost identical to those of the linear two-dimensional 
simulation shown in Figure 3 ( a d )  ; the behaviour of the primary two-dimensional 
wave is essentially linear. To obtain further insight into the unusual deformation of 
the two-dimensional wave in figure 7 ( c )  we shall use the energy-transfer-rate analysis 
developed in Singer et al. ( 1 9 8 7 ~ ) .  

Figure 8 shows the energy transfer rate from the primary two-dimensional wave 
to the mean flow integrated over horizontal planes as a function of normal coordinate 
at the time corresponding to figure 7 ( c ) .  At this phase, there are two peaks in the 
profile of u~., ,~. .  There is a great deal of energy transfer to the two-dimensional wave 
near the centreward peaks and a considerable energy transfer away from the two- 
dimensional wave in the region between the twin peaks. This indicates that 

1 F 1.M 208 
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FIGURE 7. Profiles of r.m.s. streamwise velocity of the two-dimensional wave (k, = 1.12, k, = 0) 
for 7 = 0.40, A = 0.10. (a) t = 134.4, ( b )  149.4, (c) 164.3, ( d )  179.2. 
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FIGURE 8. Energy-transfer rates to the mean flow from the primary two-dimensional wave in 
oscillating pressure gradient flow, 7 = 0.40, A = 0.10 and t = 164.3. 
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FIGURE 9. Profiles of r.m.s. streamwise velocity of the subharmonic three-dimensional wave 
(kz = 0.56, kz = 0.9) for 7 = 0.40, A = 0.10. (a)  t = 179.2, (b )  239.0. 
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FIGURE 10. Profiles of r.m.s. streamwise velocity of a fundamental three-dimensional wave 
(k, = 1.12, k, = 0.9) for = 0.40, A = 0.10. (a) t = 179.2, (b)  239.0. 

interaction between the unsteady mean flow and the disturbance is responsible for 
this deformation. 

Figures 9 (a )  and 9 ( b )  show the distribution of the r.m.s. streamwise velocity of the 
subharmonic wave (k, = 0.56, k, = 0.9) a t  the end of two consecutive periods. The 
profiles are not periodic. Two factors contribute to the aperiodicity of these 
structures. Subharmonic modes are asymmetric ; the energy tends to concentrate on 
ohe side of the channel and then slowly shift to the other side. The behaviour of this 
wave is also strongly dependent on the amplitude of the two-dimensional wave. 
While the profile of the two-dimensional wave is periodic, in part of the cycle, its 
amplitude decreases to a point insufficient to support the subharmonic instability. 

Growth of fundamental (K-type) modes requires a higher amplitude primary two- 
dimensional wave. Since the subharmonic mode is stable, the fundamental mode 
should also be stable. Figure 10(a, b )  shows the amplitude distribution of a 
fundamental mode (k, = 1.12, IC, = 0.9). There is a local maximum near the channel 
centre; this is most apparent in the last cycle, figure lo@). The central bulge is not 
characteristic of K-type modes. ‘Centre modes’ in which u is symmetric are the 
linearly least stable three-dimensional structures a t  this wavevector for steady flow 
without a two-dimensional wave. Thus, the structure is a combination of a K-type 
mode, which decays more and more rapidly as the primary two-dimensional wave 
dwindles, and the ‘centre mode’ that is left behind. 

To demonstrate that the above mean flow can undergo transition, we performed 
a simulation with a two-dimensional wave of A = 5 %. The flow undergoes transition 
via secondary instability. Figure 11 shows the energy in the most energetic 
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62 

0.10 

0.05 - 

0 

u -0.05 - 

-0.10 - 

-0.15 - 

-0.20 

B. A .  Singer, J .  H .  Ferziger and H .  L.  Reed 

................... ..... ... .... .... .... .... 
5.; 

..... .... 
+.*- 

I .  ... ; :. ........... :..* : 
: .* : 

': : a. : . . . .  *. : : :  . .  ..: * . .  . .  
3 .  . .  . .  a .  

*. ' . .  . .  . *  . .  . *  
. I  . a  ..: 

I I I I I I I 

10-5 

1 o-s 

@ lo-' 

10-8 

0 

10-9 

lo-" I I I 

0 12.5 25.0 37.5 50.0 62.5 75.0 87.5 1 
t 

1.0 

FIGURE 11. Energy history of most energetic 0, subharmonic (k, = 0.56, k, = 1.8) and 0, 
fundamental (k, = 1.12, k, = 2.7). 7 = 0.40, d = 0.10, A = 5 % .  

FIGURE 12. Instantaneous two-dimensional linear growth rates with k, = 1.12, Re = 6000. 
7 = 0.74 (8 = 0.03155), and A = -0 .12.  

subharmonic and fundamental modes. The two are competitive at this two- 
dimensional amplitude. The smaller scales develop slightly more slowly than for a 
similar case without mean-flow oscillation. The resolution was insufficient to reliably 
simulate events after the development of small scales. We saw no indication of 
relaminarization after the small scales developed, even during linearly stabilizing 
phases. 

4.2.3. Moderately low frequency (1 > 7 > 0.6) 
As illustrated in figure 2 (a) ,  in this frequency range the mean-flow oscillation has 

little effect on the linear growth rates. This range lies between the destabilizing low- 
frequency modulations and the highly damped moderate frequency modulations. In  
this range, the primary two-dimensional wave experiences energy variations of 
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FIQURE 13. Profiles of r.m.s. streamwise velocity of the two-dimensional wave (k, = 1.12, k, = 0) 
for = 0.74, A = -0.12. (a) t = 199, ( b )  249, (c) 315, ( d )  382. Note the large changes in the scale of 
the ordinate. 

approximately lo5 when A = -0.12. Owing to  the large variations of the energy in 
the two-dimensional wave a t  this frequency, it was not necessary to include one in 
the initial conditions ; the two-dimensional wave evolves from the initial random 
noise, as in a 'natural' transition. 

For the case in which 7 = 0.74, A = -0.12, figure 12 illustrates the instantaneous 
two-dimensional linear growth rates for the second cycle. Although the instantaneous 
growth rates are more jagged than for 7 = 0.40, the maximum growth rates still occur 
during phases in which there is a large region of positive curvature of the mean 
velocity profile. Figure 13 (a-d) shows the r.m.s. streamwise velocity perturbations of 
this wave at four phases during the second cycle of oscillations. A double-peaked 
structure (cf. figure 13b) appears during phases of large growth; it is stronger a t  the 
phase in which there are no inflection points and the two-dimensional wave decays 
(cf. figure 13c). The instantaneous growth rates fluctuate rapidly near this phase, 
probably owing to interference between the disturbances and the mean flow. 

Similar fluctuations in the instantaneous growth rates were reported by von 
Kerczek (1982) for a case with Re = 5772.22, '11 = 0.94, and A = 0.25. He finds a long 
stretch of positive growth when there is possible curvature in the mean velocity 
profile (cf. his figure 4). He suggests that  there is competition between quasi-steady 
eigenmodes. However, unless the average growth rates of different eigenmodes are 
approximately equal, the amplitudes of the various modes will change relative to 
each other during each cycle. Then the fluctuations in the instantaneous growth rates 
will differ from cycle to cycle since the amplitudes of the competing eigenmodes 
would also differ. Our data indicate that the instantaneous growth rates become 
periodic by the conclusion of the first cycle indicating that intermodal competition 
probably does not play a major role in this flow. 
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FIGURE 14. Energy history of the two-dimensional wave (k, = 1.12, k, = 0) for 7 = 0.74, 
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FIGURE 15. Energy history of most energetic 0 ,  subharmonic ( k ,  = 0.56, k, = 0.9) and 
0, fundamental ( k ,  = 1.12, k ,  = 0.9). 7 = 0.74, A = -0.20. 

The large variations in the energy of the two-dimensional wave at this frequency 
were able to trigger transition without the inclusion of a primary two-dimensional 
wave in the initial conditions. With 7 = 0.74 and A = -0.20, the two-dimensional 
wave grew so rapidly that a secondary instability led to transition during the first 
cycle. Figure 14 illustrates the energy evolution of the two-dimensional wave. The 
energy histories of the most energetic subharmonic and fundamental modes are 
illustrated in figure 15. All of the disturbances grow rapidly from an initial condition 
of random noise and show no indication of relaminarization. This case is interesting 
since the initial level of random noise was in the linear range. Even though the flow 
is linearly stable in the Floquet sense (cf. figure 2a),  instantaneous strength of the 
two-dimensional wave can initiate nonlinear secondary instability. 
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5.2.4. Low frequency (7 > 1)  
At very low Strouhal numbers, the flow is linearly unstable with respect to the 

two-dimensional wave. The oscillations in the energy of the unstable two-dimensional 
wave are very large. For 7 = 1.31 and d = -0.12 the energy varies by los in a single 
period. This means that very small two-dimensional disturbances can reach 
amplitudes large enough to support secondary instability during part of the cycle. 

An interesting difference between the behaviour at these Strouhal numbers and 
that a t  higher Strouhal numbers lies in the evolution of the two-dimensional wave. 
In  this case, the double-peak structure in the r.m.s. streamwise velocity profile was 
not observed. The instantaneous growth rates of the two-dimensional wave are much 
smoother than a t  larger Strouhal numbers, though the maxima still occur during 
phases in which there are large regions of positive curvature. 

We performed one simulation designed to determine the importance of the two- 
dimensional wave by artificially setting it to zero a t  each time step. The computation 
was performed with 7 = 1.31, d = -0.12, and e = lop4. When allowed to evolve 
naturally, this flow was unstable. Elimination of the two-dimensional wave stabilized 
the flow, indicating that the breakdown mechanism in the oscillating case is similar 
to the secondary instability mechanism of the steady case. 

5. Conclusions 
We studied the early stages of transition in oscillatory plane Poiseuille flow. Our 

linear results agree with those of von Kerczek but disagree with those of Grosch & 
Salwen. We suspect that Grosch & Salwen did not adequately resolve the Stokes 
layers. 

With respect to scaling, we found that the oscillation frequency is well normalized 
by incorporating it into the ratio of the Stokes layer thickness to the steady-flow 
critical layer height. Mean-flow oscillations are generally stabilizing. The most 
stabilizing frequency has a ratio of Stokes layer thickness to distance from the wall 
to the steady-flow critical layer of 7 = 0.4. Very high-frequency oscillations have 
little effect ; very low-frequency oscillations are slightly destabilizing. 

The nonlinear evolution of the least-stable two-dimensional wave is similar to its 
linear behaviour. Maximum growth rates occur when there are large regions of 
positive curvature near each wall. Streamwise r.m.s. velocity profiles of the two- 
dimensional wave show double-peak structures near each wall during phases 
corresponding to  maximum instantaneous growth and decay rates. Local energy 
transfer rate distributions are consistent with the distortion of the two-dimensional 
profile during the cycle. 

The secondary instability mechanism active in steady flows appears to be the 
principal mechanism for the growth of three-dimensionality but the behaviour is 
complicated by the existence of many more parameters. A strong average two- 
dimensional wave (compared to the steady case) is necessary to trigger transition. 
The phase a t  which the two-dimensional wave is introduced is important. Once 
small scales develop the development is so fast that there is no indication of 
relaminarization. 

At moderately low Strouhal numbers, many waves experience long intervals of 
growth and decay; the ratio of maximum to minimum r.m.s. energy can be as large 
as lo6. Transition can occur without an artificially generated wave in spite of the fact 
that all initial disturbances are in the linear range and the flow is linearly stable if 
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integrated over a cycle. At very low Strouhal numbers, similar nonlinear transition 
phenomena occur. 
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